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SUMMARY

In this paper a layer-structured finite volume model for non-hydrostatic 3D environmental free surface
flow is presented and applied to several test cases, which involve the computation of gravity waves. The 3D
unsteady momentum and mass conservation equations are solved in a collocated grid made of polyhedrons,
which are built from a 2D horizontal unstructured mesh, by just adding several horizontal layers. The
mesh built in such a way is unstructured in the horizontal plane, but structured in the vertical direction.
This procedure simplifies the mesh generation and at the same time it produces a well-oriented mesh for
stratified flows, which are common in environmental problems. The model reduces to a 2D depth-averaged
shallow water model when one single layer is defined in the mesh. Pressure–velocity coupling is achieved
by the Semi-Implicit Method for Pressure-Linked Equations algorithm, using Rhie–Chow interpolation
to stabilize the pressure field. An attractive property of the model proposed is the ability to compute the
propagation of short waves with a rather coarse vertical discretization. Several test cases are solved in
order to show the capabilities and numerical stability of the model, including a rectangular free oscillating
basin, a radially symmetric wave, short wave propagation over a 1D bar, solitary wave runup on a vertical
wall, and short wave refraction over a 2D shoal. In all the cases the numerical results are compared either
with analytical or with experimental data. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical models have become widely used in the study of free surface flows in environmental
engineering. A number of models exist for the simulation of free surface wave propagation in
coastal engineering applications. Shallow water models are often used for the simulation of long
shallow waves but not for short deep waves, where the 3D and non-hydrostatic effects are relevant.
Even the 3D shallow water equations (3D-SWE), which are a hydrostatic pressure version of
the 3D Reynolds-Averaged Navier–Stokes equations, are not able to compute the propagation of
deep waves. This is because deep wave dispersion is mainly caused by a non-hydrostatic pressure
distribution.

Depth-averaged models based on the Boussinesq wave equations are an extension of depth-
averaged shallow water models. Boussinesq-type models are specially suited for the modelling
of wave dispersion, shoaling, refraction, and diffraction in mild-slope shallow and intermediate
waters. However, Boussinesq equations assume an irrotational and inviscid flow and therefore, they
cannot consider the turbulent diffusion nor the wave-current interaction, which can be relevant in
some problems.

Against the above mentioned models, non-hydrostatic models solve the 3D flow equations
without any assumption about the pressure distribution. This is the most general and accurate
approach to model free surface flows, although not the most commonly used due to its computational
requirements, which are quite expensive. This is specially true in environmental problems, where
the size of the spatial domain is very large and flow patterns of different length scales appear in the
flow. Nonetheless, the increase in computational power is making feasible the use of 3D models
in environmental hydraulics, and it will probably become a common practise in the following
years. Olsen and Kjellesvig [1] used a 3D non-hydrostatic model in order to compute the flow in a
spillway, where the vertical velocity is important, the extension of the spatial domain is small, and
the geometry is simple. Wu et al. [2] used the same approach to compute the flow and sediment
transport in open channels, while Casulli and Zanolli [3] used a non-hydrostatic free surface model
to compute the flow in the Venice Lagoon. Concerning wave propagation, non-hydrostatic models
have been used by Stelling and Zijlema [4], Zijlema and Stelling [5], Li and Fleming [6], and Lin
and Li [7], among others, using in each case different numerical techniques to solve the 3D flow
equations.

The main difficulty found in 3D free surface models compared with models over a fixed geometry
is the computation of the unsteady free surface. A rather general classification of the available
numerical techniques to compute the free surface position distinguishes between mesh methods
and meshless methods. Meshless methods use a Lagrangian formulation in order to compute the
movement of fluid particles applying Newton’s second law. The most popular meshless method
nowadays is the smoothed particle hydrodynamics method [8]. It has the advantage of being able
to treat complicated free surface deformations, but its computational cost is extremely high.

Mesh methods can be classified in moving grid methods and fixed grid methods. Moving grid
methods use a Lagrangian formulation in order to move the grid nodes and boundaries with the
fluid [9, 10]. The free boundary is computed with a front-tracking technique. A popular moving
grid method for small deformations of the free surface is the arbitrary Lagrangian–Eulerian method,
in which the boundary of the grid moves with the fluid and the inner nodes of the mesh move
arbitrarily in order to reduce mesh distortion, being the number of nodes constant through the
calculation. The advantage of this approach is that the free surface is resolved sharply, without
diffusing it. The main disadvantage is the computational cost, since all the nodes of the mesh
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move at each iteration and thus, the geometric properties of the mesh need to be recomputed.
Fixed grid methods can use a fully Eulerian formulation (interface capturing) or a combined
Eulerian–Lagrangian formulation (interface tracking). These kind of methods introduce a volume
fraction function, which defines if an element is completely wet, partially wet, or completely
dry. Among the many Eulerian methods that have been proposed, the Volume of Fluid (VOF)
method, originally proposed by Hirt and Nichols in 1981 [11] should be mentioned. Combined
Eulerian–Lagrangian methods use a front-tracking technique in order to follow the free surface
(like Lagrangian methods), though all the computations are done over a fixed grid (like Eulerian
methods). In this category fall the height-function methods [12] (which use a single-valued height
function zs= f (x, y) in order to define the free surface), the surface marker methods [12], and the
volume marker methods.

In the particular case of environmental free surface flows, the most suited methods are probably
height-function methods for cases in which the free surface can be defined by a single-valued
function zs= f (x, y). This can be usually done in environmental problems with few exceptions,
as, for instance, when modelling the shape of a breaking wave.

This paper presents a layer-structured finite volume model for non-hydrostatic 3D free surface
flow, specially designed for the computation of environmental flows. The 3D numerical mesh is
built from an unstructured 2D horizontal mesh with several horizontal layers over the water depth,
being the number of layers dependent on the expected complexity of the vertical velocity profile.
The mesh built in such a way is unstructured in the horizontal plane, but structured in the vertical
direction. The reasons for using such a kind of mesh are two: first, the mesh generation in rivers and
coastal regions is simplified, since the geometry can be discretized with an unstructured 2D mesh
and second, a vertical-structured mesh is specially suitable for problems where the free surface
is mainly horizontal, as well as for stratified flows, which are common features in environmental
problems. When just one horizontal layer is defined in the mesh, the model reduces to a 2D
depth-averaged shallow water model. Section 2 presents the equations solved by the model. The
numerical schemes used are explained in detail in Section 3. The convective flux is discretized with
a high-order scheme, using the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE)
algorithm to achieve pressure–velocity coupling. The equations are solved in a non-staggered grid,
using Rhie-Chow interpolation in order to stabilize the pressure field. An attractive property of the
model proposed is the ability to compute the propagation of short waves with a rather coarse vertical
discretization. This is possible due to a correct treatment of the free surface boundary condition.
In Section 4 several test cases are solved in order to show the capabilities of the model, including
a rectangular deep free oscillating basin, a radially symmetric wave, short wave propagation over
a 1D bar, solitary wave runup on a vertical wall, and short wave propagation over a 2D shoal.

2. A NON-HYDROSTATIC 3D FREE SURFACE FLOW MODEL

2.1. Mass and momentum equations

Non-hydrostatic free surface water flow is governed by the 3D-RANS equations for an incom-
pressible Newtonian fluid of constant density, which can be expressed as

�Uj

�x j
=0 (1)
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where Ui is the velocity, Pt is the total pressure, T v
i j is the viscous stress tensor, � is the fluid

density, g is the gravity acceleration, � is the fluid dynamic viscosity, and �uiu j are the Reynolds
stresses. The total pressure Pt can be decomposed into a hydrostatic contribution Ph and a dynamic
contribution Pd as:

Pt= Ph+Pd (4)

The hydrostatic pressure balances the gravity force, being defined as:

�Ph
�z

=−�g, Ph(z= zs)=0 (5)

Vertical integration of Equation (5) from an arbitrary elevation z to the free surface elevation
zs gives:

Ph=�g(zs−z) (6)

Introducing Equations (4) and (6) into the 3D-RANS equations gives:

�Uj

�x j
=0 (7)

�Ui

�t
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, i=1,2 (8)
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(9)

In all the problems presented in the paper, which concern wave propagation, turbulence, and
viscous stresses can be neglected, and Equations (7)–(9) reduce to:

�Uj

�x j
=0 (10)

�Ui

�t
+ �UiU j

�x j
=−g

�zs
�xi

− 1

�

�Pd
�xi

, i=1,2 (11)

�U3

�t
+ �U3Uj

�x j
=−1

�

�Pd
�x3

(12)
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2.2. Initial and boundary conditions

In order to solve Equations (10)–(12) in a spatial domain, initial and boundary conditions need
to be specified. The initial value of all the variables (velocity, dynamic pressure, and free surface
elevation) need to be specified:

Ui (x, y, z, t=0) = U o
i , i=1,3

Pd(x, y, z, t=0) = Po
d

zs(x, y, t=0) = zos

(13)

Four kinds of boundary conditions are considered: inlet boundary, outlet boundary, wall boundary
and free surface boundary.

2.2.1. Inlet and outlet open boundaries. At inlet boundaries the three velocity components need
to be defined, while no condition is needed for the water depth. The first derivative of the dynamic
pressure is set to zero:

Ui (�in, t) = Uc,i , i=1,3

�Pd
�xn

(�in, t) = 0
(14)

where �in is the inlet boundary, Uc,i is the value imposed at the inlet boundary for each velocity
component, and xn is the normal direction to the boundary considered.

At outlet boundaries only the water surface elevation needs to be prescribed, and the first
derivative of the dynamic pressure is also set to zero:

zs(�out, t) = zc

�Pd
�xn

(�out, t) = 0
(15)

where �out is the outlet boundary and zc is the imposed value for the water surface elevation at
the outlet boundary.

2.2.2. Wall boundaries. Wall boundaries include the lateral walls as well as the bed surface. Both
boundaries are impervious and therefore, the velocity component normal to the boundary is set
to zero in both cases. As we are not considering viscous or turbulent stresses in the problems
presented in this paper, the wall friction is neglected (free slip boundary condition). Regarding
pressure, its first derivative is set to zero at wall boundaries.

Un(�wall, t)=0

�Pd
�xn

(�wall, t)=0
(16)

where �wall is the wall boundary and Un is the velocity component normal to the wall boundary.

2.2.3. Free surface boundary. In addition, to compute the position and evolution in time of the
free surface boundary, it is necessary to impose correct boundary conditions on it. The boundary
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condition imposed at the free surface is zero shear stress (the wind stress is not considered) and
zero dynamic pressure (atmospheric pressure is taken to be the reference pressure). No condition
is imposed over the velocity. It is actually the velocity at the free surface boundary, which is used
to compute its position and evolution in time, as it will be detailed in Section 3.

3. A LAYER-STRUCTURED FINITE VOLUME SOLVER

3.1. Spatial discretization

The equations presented in Section 2 are solved with a layer-structured finite volume solver.
Spatial discretization is done in a semi-structured cell-centred collocated grid. The 3D numerical
mesh is built as a 2D unstructured horizontal mesh with several horizontal layers, which can
have different thickness (Figure 1). Velocity and pressure are stored at the nodes of the control
volumes (collocated grid). The 2D variables (free surface and bed surface elevation) are stored at
the geometric centre of the 2D horizontal mesh cells, using the height function zs(x, y, t) to define
the free surface elevation and zb(x, y, t) to define the bed elevation. The use of a single-valued
height function to define the free surface precludes the simulation of plunging waves and other
similar phenomena where several layers of fluid are separated with air. On the other hand, the
mesh generation is simplified, and the mesh is well oriented for stratified flows.

The cells of the 2D horizontal mesh can have any shape, although most applications can be
efficiently meshed with triangles and quadrilaterals. The 3D control volumes are extruded vertically
from the 2D cells forming a prism, which usually has 5 or 6 faces, depending whether the 2D
mesh is built from triangles or quadrilaterals (Figure 2). The orientation of the control volume
faces is either horizontal (top and bottom faces) or vertical (lateral faces).

The total number of control volumes in the mesh (Nt ) is the product of the number of 2D
cells which form the horizontal mesh (Ni ) times the number of horizontal layers (Nk), so that
Nt =Ni Nk . Alternatively, the 3D mesh can also be thought of as Ni vertical columns of Nk
elements per column. Any element in the mesh is identified with two indices, the first index i
defines its position in the horizontal mesh (i=1, . . . ,Nh), while the second index k defines the
layer to which the element belongs (k=1, . . . ,Nk).

Not all of the control volumes are always active throughout the computation. Depending on
the position of the bed and free surfaces, certain control volumes might be completely out of the
fluid domain, either because they are located completely below the bed surface or because they
are completely above the free surface. Those free-of-fluid volumes do not need to be considered
in the computations. The rest of control volumes can be completely or partially filled with water.
The thickness of each active control volume is given by

�zi,k =min(zk+1, zs,i )−max(zk, zb,i ) (17)

where zb and zs define respectively the bed and free surface elevations. Due to the movement of
the free surface in unsteady computations, at each time step the active elements are identified and
their thickness is computed.

3.2. Discretization of the momentum equations

The 3D momentum equations are solved with an unsteady semi-implicit finite volume solver in
a collocated grid, using Rhie–Chow interpolation [13] in order to stabilize both the dynamic as
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Figure 1. 3D, plan and section view of a typical numerical mesh.

well as the hydrostatic pressure. Integration of the momentum equations (11)–(12) over a control
volume Ci gives: ∫

Vi

��

�t
dV +FC

i =FP
i +FZ

i (18)

where � accounts for a given velocity component and FC
i , FP

i , FZ
i represent, respectively, the

numerical discretization of the following terms: convection, dynamic pressure and hydrostatic
pressure. The subindex i in Equation (18) accounts for integration over the 3D control volume
Ci . Convection and pressure terms might be discretized at time tn , tn+1 or any other intermediate
time, giving place to explicit or implicit schemes in time. In our case convection terms FC

i are
discretized at time tn+1/2, the dynamic pressure source term FP

i is computed implicitly at time
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Figure 2. Numerical mesh construction: (a) plan view of an arbitrary numerical mesh and (b) control
volumes generated from a triangle and a quadrilateral.

tn+1, while the hydrostatic pressure term FZ
i is computed explicitly in unsteady computations, but

implicitly in steady computations for reasons that will be mentioned below. Discretization of the
time derivative in Equation (18) gives

�n+1−�n

�t
Vi +FC,n+1/2

i =FP,n+1
i +FZ ,n+�

i (19)

where � varies between 0 for an explicit discretization of the hydrostatic pressure, and 1 for an
implicit discretization of the hydrostatic pressure. The spatial discretization of each term in Equation
(19) is specified in the following.

3.3. Discretization of the convective flux

Integration over a control volume of the convective flux in the momentum equation for the velocity
component � is given by∫

Vi

��Um

�xm
dV =

∫
Ai

�Umñm dA=
∫
Ai

�Un dA≈ ∑
j∈Ki

�i j�
∗
i j (20)

where Ki accounts for all the control volumes C j , which share any face with the control volume
Ci , Un is the velocity component normal to the cell face, �i j =Un,i j Ai j is the outlet flux through
the control volume face (which is computed by linear interpolation from the velocity value at the
nodes Ni and N j ), Ai j is the area of the common face to the volumes Ci and C j , and ñm is
the mth component of the unit normal vector to the control volume face. In Equation (20), �∗

i j
accounts for the discretization of the variable � at the control volume face, which is computed
with an adequate upwind scheme. In all the present applications the second-order Gamma scheme
[14] has been used.

The discretization of the convective flux can be cast in standard form as:

FC,n+1/2
i = ∑

j∈Ki

�i j�
∗
i j =ai

�n
i +�n+1

i

2
+ ∑

j∈Ki

ai j
�n

j +�n+1
j

2
(21)

The coefficients ai ,ai j might be computed at time tn or tn+1. In the tests presented in this paper
no significant differences were found with respect to the time discretization of the coefficients
ai ,ai j . The coefficients ai and ai j are given by the specific numerical scheme used, in our case the
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Gamma scheme. Introducing Equation (21) into Equation (19), the standard form of the discretized
momentum equations is obtained as:

Vi
�t

�n+1
i +ai

�n+1
i +�n

i

2
+ ∑

j∈Ki

ai j
�n+1

j +�n
j

2
= Vi

�t
�n
i +FP,n+1

i +FZ ,n+�
i (22)

3.3.1. Gamma scheme. The Gamma scheme was proposed by Jasak et al. in [14] as a second-
order scheme specially suitable for unstructured meshes. The scheme belongs to the family of
normalized variable diagram (NVD) differencing schemes [15, 16]. It is a bounded form of central
differencing constructed on a compact computational molecule. This is of great appeal when
dealing with unstructured meshes, since the scheme uses only the close upwind node to each face
in order to compute the convective flux. This is not the case in other high-order schemes, which
need information about the far upwind nodes, and those are difficult to identify in an arbitrarily
unstructured mesh.

The Gamma scheme uses second-order central differencing wherever this scheme satisfies the
boundedness criterion in the NVD, and first-order upwind differencing otherwise. In order to avoid
instabilities when switching between both schemes, a blending factor � is introduced and a smooth
transition between schemes is established. The scheme works as follows. First, the direction of the
normal velocity is checked at every face, and the normalized variable �̃ is computed at the centre
of each control volume from the previous solution at time tn as

�̃i =1− � j −�i

2(∇U)iri j
(23)

where the gradient (∇U)i is computed applying the Gauss theorem to the control volume, and the
distance vector ri j joins the nodes Ni and N j . In Equation (23) the fluid flows through the control
volume face from the node Ni to the node N j . From the value of the normalized variable �̃i at
the centre of the control volume, the value of � at the cell face is computed as

�∗
i j = [1−�i j (1− fi j )]�i +�i j (1− fi j )� j

fi j = d j

di +d j
= � j

�i +� j

(24)

being fi j the linear interpolation coefficient for the control volume face (Figure 3) and �i j the
blending factor. For �i j =0 the first-order upwind scheme is recovered, while �i j =1 gives the
second-order centred scheme. Using Equation (24) into Equation (20), the coefficients ai and ai j
in Equation (21) are obtained as:

ai j = �i j (1− fi j )�i j

ai = − ∑
j∈Ki

ai j + ∑
j∈Ki

�i j =− ∑
j∈Ki

ai j
(25)
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Figure 3. Numerical mesh: (a) vertical section of a numerical mesh and
(b) interpolation coefficient for face values.

In order to obtain a stable NVD scheme the blending factor �i j is computed at each control
volume face attending to the following cases:

�i j = 0 if 1��̃i

�i j = 1 if �m��̃i<1

�i j = �̃i/�m if 0<�̃i<�m

�i j = 0 if �̃i�0

(26)

The coefficient �m controls the amount of blending between the first-order upwind scheme and
the second-order central differencing scheme. Small values of �m introduce less blending and
therefore produce more accurate but also more unstable solutions, while large values of �m give
a more stable but less accurate scheme. In [14] a value of �m between 0.1–0.5 is recommended.

3.4. Dynamic pressure

The dynamic pressure source term in the mth-momentum equation is discretized using a centred
scheme as:

FP,n+1
i =−1

�

∫
Vi

�Pn+1
d

�xm
dV =−1

�

∫
Ai

Pn+1
d ñm dA=−1

�

∑
j∈Ki

Pn+1
d,i j ñm,i j Ai j , m=1,3 (27)

The value of the dynamic pressure at the control volume face (Pn+1
d,i j ) is computed by linear

interpolation from the node values as

Pn+1
d,i j = fi j P

n+1
d,i +(1− fi j )P

n+1
d, j (28)

being fi j the interpolation coefficient defined in Equation (24).
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3.5. Free surface gradient

The free surface gradient source term accounts for the hydrostatic pressure force in the x- and
y-directions. The centred discretization of the free surface gradient used in the solver is given by:

FZ ,n+�
i =−g

∫
Vi

�zn+�
s

�xm
dV =−g

∫
Ai

zn+�
s ñm dA=−g

∑
j∈Ki

zn+�
s,i j ñm,i j Ai j , m=1,2 (29)

In Equation (29) the free surface elevation zs might be computed at time tn (explicitly), at time
tn+1 (implicitly), or using a combination of both values as:

zn+�
s = zn+1

s �+zns (1−�), �∈[0,1] (30)

It is convenient to use an explicit discretization of the free surface gradient (�=0) for unsteady
problems, while a semi-implicit discretization, which is numerically more stable, is preferred for
steady problems. The reason for doing so is that an implicit discretization introduces much damping
in unsteady computations.

3.6. Rhie–Chow interpolation

As a collocated grid is used for the numerical discretization, it is necessary to introduce some
kind of stabilization technique in order to avoid a checkerboard pressure field. In the present
model, Rhie–Chow interpolation [13] has been used to stabilize both the dynamic as well as the
hydrostatic pressure. In order to compute the mass residual for each control volume, the face
velocity component in the x-direction is computed from the following expression:

�i j =�0
i j −

1

�

�Pd
�x

∣∣∣∣
i j

Vi j
a f

−g
�zs
�x

∣∣∣∣
i j

Vi j
a f

, �0
i j = fi j�

0
i +(1− fi j )�

0
j (31)

with 1/a f = fi j/ai +(1− fi j )/a j . In Equation (31) the velocities�0
i are computed from the velocity

at the nodes, after subtracting the dynamic pressure and free surface gradient source terms from
them, which considering the steady state of Equation (22) gives:

�0
i =�i + 1

�

�Pd
�x

∣∣∣∣
i

Vi
ai

+g
�zs
�x

∣∣∣∣
i

Vi
ai

=�i − FP
i +FZ

i

ai
(32)

As Rhie–Chow interpolation is just a stabilization technique, in order to simplify the formulation
the non-orthogonal contribution can be neglected without any major problem in the discretization
of the pressure and free surface gradients at the control volume face in Equation (31). With this
approximation the second and third addends on the right-hand side of Equation (31) are computed as

1

�

�Pd
�x

∣∣∣∣
i j

Vi j
a f

≈ 1

�

Vi j
a f

Pd, j −Pd,i
d⊥,i j

ñx,i j = 1

�

1

a f
(Pd, j −Pd,i )ñx,i j Ai j (33)

1

�

�zs
�x

∣∣∣∣
i j

Vi j
a f

≈ 1

�

Vi j
a f

zs, j −zs,i
d⊥,i j

ñx,i j = 1

�

1

a f
(zs, j −zs,i )ñx,i j Ai j (34)

where 1/a f is computed as 1/a f = fi j/ai +(1− fi j )/a j . Equations (31)–(34) are used in order to
compute the velocity component �i j at each cell face. Analog expressions are used for the velocity
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components in the y- and z-directions, just shifting ñx for ñ y or ñz depending on the velocity
component considered.

3.7. SIMPLE algorithm

Mass continuity is achieved by pressure–velocity coupling using the SIMPLE algorithm [17].
At each time step the procedure is as follows. First, the three momentum equations are solved
using the dynamic pressure field from the previous time step Pn

d . The solution of that system
of equations gives a first guess for the velocity field at time tn+1, which does not satisfy the
continuity equation. The continuity residual at each control volume is computed, and a pressure
correction equation is solved in order to obtain a new pressure field and a new divergence free
velocity field. Then, all the coefficients ai ,ai j , as well as the source terms FZ

i ,FP
i are recomputed,

the three momentum equations are solved again with the new pressure field, and the process is
repeated until convergence, i.e. until the velocity field obtained from the momentum equations
is divergence free. Notice that if an explicit discretization of the free surface gradient is used,
then the free surface elevation source term FZ

i is not updated within the SIMPLE iterations.
In the former procedure the strongest implicit discretization is that of the convective flux. The
implicit discretization of the dynamic pressure and free surface gradients depends on the number
of iterations used in the SIMPLE algorithm, i.e. in the SIMPLE convergence criterion.

At each time step, the continuity residual for the control volume Ci is computed as

Ri = ∑
j∈Ki

URC
n,i j Ai j = ∑

j∈Ki

�RCi j (35)

where URC
n,i j is the normal outlet velocity to the cell face computed from Rhie–Chow interpolation.

As the residual is not zero, a velocity correction u′ is needed. In order to achieve mass conservation,
the velocity correction must fulfil the following equation:

Ri =− ∑
j∈Ki

u′
n,i j Ai j (36)

The velocity correction u′
n,i j can be related to the pressure gradient using a simplification of

Equation (22), applied to the control volume face:

u′
n,i j =−1

�

�P ′
d

�n

∣∣∣∣∣
i j

Vi j
a f

(37)

where 1/a f = fi j/ai +(1− fi j )/ai j is computed from the coefficients used in the momentum
equations. Combining Equations (36) and (37), and neglecting the non-orthogonal pressure gradient
at the cell face, gives the following equation for the pressure correction:

a∗
i P

′
d,i +

∑
j∈Ki

a∗
i j P

′
d, j = Ri (38)

with:

a∗
i j =

1

�

1

a f

Vi j
d⊥,i j

Ai j = 1

�

A2
i j

a f
, a∗

i =− ∑
j∈Ki

a∗
i j (39)
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Equation (38) is solved in order to obtain the pressure correction P ′
d,i at each control volume

in the mesh. The new pressure field is used in the momentum equation in order to obtain a new
velocity field, and an iterative procedure is followed until convergence. Convergence is achieved
when the following criterion is fulfilled:∑

i
∑

j∈Ki
�RCi j∑

i
∑

j∈Ki
|�RCi j |<	 (40)

where 	 is a small number (	=10−3–10−6). The iterative process is stopped either when the
convergence criterion is fulfilled or when a maximum number of iterations is achieved (normally
between 5 and 10 iterations are allowed for unsteady problems).

When solving the pressure equation, at the free surface nodes the pressure is computed using a
linear interpolation between the free surface and the inner nodes as

Pkwse= Pkwse−1
zkwse−zs
zkwse−1−zs

(41)

where the subindex kwse refers to the nodes in the free surface layer (free surface nodes) and zs
is the free surface elevation. In Equation (41) it has been considered that the free surface pressure
is zero (the atmospheric pressure is the reference pressure). As it will be shown in the results,
using Equation (41) gives a much more accurate prediction of the wave celerity than imposing
the zero pressure directly at the free surface nodes (Pkwse=0). In fact the latter is equivalent to
imposing an additional zero vertical gradient boundary condition for the dynamic pressure, which
is not physically correct and would require a very fine vertical discretization near the free surface
in order to compute the correct wave celerity.

3.8. Free surface computation

In order to update the water surface elevation at each time step, the control volumes in the free
surface layer (free surface volumes) are considered. The evolution of the free surface in the model
is computed by a mass continuity equation, using a height-function method. This is an adequate
and efficient approach for problems with a single-valued free surface function zs= f (x, y), which
is often the case in environmental flows. When the free surface of the fluid is not a single-valued
function this approach cannot be used. The free surface equation reads:

�zs
�t

=Ws− �zs
�x

Us− �zs
�y

Vs (42)

where Us,Vs,Ws are the three components of the free surface velocity. Instead of using Equation
(42) directly, a mass conservation equation averaged in the vertical direction is used. Integration
of the 3D mass conservation equation from an arbitrary elevation z to the free surface elevation
zs gives:

0=
∫ zs

z

(
�U
�x

+ �V
�y

+ �W
�z

)
dz

= �
�x

∫ zs

z
U dz−Us

�zs
�x

+ �
�y

∫ zs

z
V dz−Vs

�zs
�y

+Ws−Wz (43)
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Combining Equations (42) and (43) gives the following equation for the free surface evolution:

�zs
�t

=Wz− �
�x

∫ zs

z
U dz− �

�y

∫ zs

z
V dz (44)

Equation (44) is solved in a fluid layer near the free surface at each time step. Actually, the
integration range is only extended to the free surface volumes, and so the right-hand side of
Equation (44) is nothing but the mass residual in the free surface volumes. Hence, the free surface
is moved upward or downward depending on the sign of the mass residual at the free surface
nodes, using the following equation:

zn+1
s −zns =− �t

Ah,i

∑
j
Un+1
n,i j Ai j (45)

where the summation index extends to all the control volume faces except to the top face (the face
that defines the free surface) and Ah,i is the area of the top face horizontal projection.

3.9. Solver for the system of equations

During the iterative procedure described in this section, four systems of equations need to be
solved: three for the momentum equations (Equations (22)) and one for the pressure correction
equation (Equation (38)). The number of equations of each system is equal to the number of active
volumes in the mesh. Each system of equations is solved iteratively by layers. For each layer it
is necessary to solve a sparse linear system, which can be efficiently done by a preconditioned
GMRES [18] method. An iterative procedure can be followed, sweeping the horizontal layers
several times in order to increase the implicit discretization of the solver, but this is not necessary
since the SIMPLE algorithm is itself an iterative method.

4. TEST CASES

Several test cases have been computed in order to verify the capabilities of the model to handle
short wave transformation. In all the cases the numerical results are compared either with analytical
solutions or with experimental results.

The first test case is a standing wave in a closed and deep rectangular basin. This test case
is commonly used to verify the accuracy of wave propagation models when computing linear
dispersive waves [4, 5, 19, 20]. The influence on the solution of some numerical issues, as the
number of horizontal layers and the hydrostatic pressure semi-implicit time discretization, is
analysed. The numerical results are compared with the inviscid analytical solution, with special
attention to the wave period prediction and to the numerical damping of the method. The second
test case consists in a radially symmetric wave. The results computed with both a structured and
an unstructured mesh are compared. In the third test case the experimental data provided for the
Benchmark problem number 3 in the Second International Workshop on Long-Wave Runup Models
are compared with the numerical results for the shoaling and runup in a vertical wall of solitary
waves. The ability of the model to compute dispersive wave transformation over a submerged bar
is investigated in the fourth test case, using the experimental results of Beji and Battjes [21] for
comparison with the model predictions. Finally, in the fifth test case the propagation of a short
wave over a 2D shoal is computed. This problem involves refraction, diffraction, and shoaling
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of dispersive waves. The numerical results are compared with the experimental data of Berkhoff
et al. [22].

All the test cases have been modelled with a three horizontal layer mesh, using the Gamma
scheme and a second-order Crank–Nicholson time discretization. It was found that with this number
of layers a good compromise between accuracy and computational cost is met in short wave
computations with the present model. One single horizontal layer (depth-averaged SWE) produces
completely erroneous results when dealing with short waves. Using two horizontal layers improves
considerably the results, but still some errors are introduced in highly dispersive waves. A mesh
with three horizontal layers was able to produce reasonably good results in all the test cases
studied in this paper. Increasing the number of layers did not improve significantly the results,
while increasing the computational cost. Nonetheless, it should be noticed that the thickness of
the horizontal layers has some influence on the results. In our computations we have observed that
good results are often obtained using a bottom layer with a thickness of approximately half the
water depth, a middle layer with a thickness of approximately 30% of the water depth, and a top
layer thickness of 20% the water depth. Of course this guideline does not intend to be universal
and may vary for other test cases.

4.1. Standing short wave in a closed rectangular basin

This test case is commonly used in order to verify the accuracy of numerical methods in the
computation of the wave celerity. It can also be used to evaluate the numerical damping introduced
by the discretization scheme. We will consider the same initial conditions as in [4, 19], which
produce a highly dispersive wave. The rectangular basin is 20m long and 10m deep, and it is
initially excited by a sinusoidal perturbation with a wave length of L=20m and a wave height of
H =0.2m, and the initial conditions are given by:

zs=10+0.1∗cos
(
x

10

)
, u=v=w=0 (46)

In this case linear wave theory applies since the ratios H/L=0.01 and H/d=0.02 are both
much lower than 1, and the oscillation period T is given by the linear dispersion relation as:

c2= gL

2

tanh

2
d

L
=5.57m/s, T = L

c
=3.59s (47)

For the numerical computations, the time step is set to �t=0.1s=T/35.9 and the finite volume
size to �x=1m= L/20. The computation is run for 36s, which approximately comprises 10 wave
periods. Figure 4 shows the numerical results obtained using a mesh with three horizontal layers.
The thickness of each layer from the bed to the top is: 5, 2.5, and 2.5m. It is clearly shown in
Figure 4 the importance of the correct implementation of the free surface boundary condition for
the dynamic pressure. If the zero pressure boundary condition is imposed at the free surface using
Equation (41), the oscillation frequency is very accurately resolved. On the other hand, if the zero
pressure boundary condition is imposed at the free surface nodes, then the oscillation period is
underestimated by the numerical model.

The numerical results obtained with a two layer mesh are shown in Figure 5. The thickness
of each layer in this case is 5m. With just two layers the model underpredicts the wave period.
It is also shown in Figure 5 the importance of the hydrostatic pressure time discretization. An
implicit discretization of the free surface gradient introduces too much damping in the solution,
while using an explicit discretization almost does not damp the numerical solution.
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Figure 4. Rectangular closed basin computed with three horizontal layers. Numerical results
(solid line) and analytical solution (circles): (a) P=0 imposed at the free surface interface

and (b) P=0 imposed at the free surface nodes.

Figure 5. Rectangular closed basin computed with two horizontal layers. Numerical results (solid line)
and analytical solution (circles): (a) explicit discretization of the hydrostatic pressure and (b) implicit

discretization of the hydrostatic pressure.

Although this problem is just two dimensional in the vertical direction, it has also been computed
with a fully 3D mesh, in order to check the unstructured discretization method presented in
Section 3. For this purpose, the unstructured horizontal mesh shown in Figure 6 has been used. In
this case the nodes (which are placed at the geometric centre of the triangles in Figure 6) are not
aligned and the distance between nodes is not uniform. The number of nodes in the longitudinal
direction is 40, which gives an average distance between nodes of �x=0.5m. The results computed
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with the unstructured mesh are almost identical to those obtained with the uniform mesh. The
amount of damping is virtually identical. There is a small difference in the computed oscillation
periods (Table I), but this is not significant considering that a rather coarse discretization is
being used.

4.2. Radially symmetric wave

A radially symmetric small amplitude inviscid wave was modelled in order to check the ability of
the model to compute two-dimensional wave propagation in an unstructured grid. This test case
was also modelled in [23, 24]. The initial conditions are given by zero velocity and the following
free surface profile:

zs=0.7+0.01exp(−(x2+ y2)/10) (48)

Two different meshes, a structured mesh built from quadrilaterals as well as an unstructured
mesh built from triangles, have been used in order to verify that the same results are obtained
in both cases (Figure 7). The structured mesh has 64×64 cells with �x=�y=0.5m. A similar
element size was used for the triangular elements of the unstructured mesh. Three horizontal layers
have been used in the computations, although in this case almost the same results are obtained
with one single layer, since the ratio between the water depth and the wave length d/L is small.
The numerical results (Figure 7) agree very well with the theoretical predictions of the wave crest
given in [24]. No significant differences appear between the results obtained with both meshes.

4.3. Solitary wave runup

This test case is the Benchmark problem number 3 proposed in the Second International Workshop
on Long-Wave Runup Models, which was held in Washington in 1995. Solitary wave experiments
were conducted in the U.S. Army Engineer Waterways Experiment Station [25], in a 23.2m long
and 0.45m wide wave flume. The first part of the bed flume (15m) is horizontal, being followed
by three planes with different slopes: a first plane with a slope of 1:53 over 4.36m, a second plane
with a slope of 1:150 over 2.93m, and a third plane with a slope of 1:13 over 0.9m. At the end
of the flume there is a vertical wall, which produces a complete reflection of the incident wave.
The still water depth is 0.218m in the horizontal part of the flume.

Figure 6. Rectangular closed basin. Horizontal view of the unstructured mesh.

Table I. Rectangular closed basin. Free oscillation periods obtained using different number
of layers for the vertical discretization. The analytical solution is T =3.59s.

1 layer (s) 2 layer (s) 3 layer (s) 4 layer (s) 10 layer (s)

Structured mesh 2.05 3.33 3.58 3.59 3.61
Unstructured mesh 2.03 3.31 3.56 3.57 3.58
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Figure 7. Radially symmetric wave. Numerical (white circle) and theoretical (black circle)
predictions of the wave crest: (a) structured mesh and (b) unstructured mesh.

Table II. Solitary wave runup on a vertical wall. Position of the wave gauges.

Gage number S4 S5 S7 S9

Gage position (m) 12.64−14.06 15.04 19.40 22.33

The numerical results are compared with experimental data provided in the Second International
Workshop on Long-Wave RunupModels [25]. Three solitary waves were generated in the laboratory
experiments using a piston wavemaker. Only the first two waves (Case A and Case B) have been
modelled here, since the third wave breaks before reaching the vertical wall. The wave runup at
the vertical wall and the time evolution of the free surface at several wave stations were registered
in the experiments (Table II). The accuracy of the water depth gauges used in the experiments was
around 1mm, while the runup at the vertical wall was measured by visual observation.

The time step used for the computations is �t=0.01s and the spatial discretization size �x=
0.01m. The vertical discretization is done with three horizontal layers (Figure 8). The thickness of
each layer is 12cm (bed layer), 6cm (middle layer), and 4cm (surface layer). The spatial domain
covers all the wave flume (23.2m). The number of finite volumes in the numerical mesh is 2320
per layer (6960 control volumes in the three layers). Further refinement of the spatial and time
discretization did not produce significant improvement in the results.

At the inlet boundary the normal pressure and velocity gradients are set to zero, and the free
surface level is specified from the following expression, which was proposed for this problem
in [26]:

zs=0.218+c0 exp− (t−c1)2

c2
(49)

The value of the constants c0, c1, and c2 in Equation (49) is specified in Table III. The constant
c0 defines the amplitude of the incident solitary wave, the constant c1 defines the time at which
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Figure 8. Solitary wave runup. Vertical discretization and longitudinal profile: (a) Case A and (b) Case B.

Table III. Solitary wave runup. Constants used for the
boundary condition specification (Equation (49)).

c0 (m) c1 c2

Case A 0.0083 1.5 0.5775
Case B 0.0560 1.5 0.1173

the crest of the wave enters the domain (but it does not affect its shape), while the constant c2
defines the shape of the wave. The value of the constant c0 has been specified in such a way that
the numerical and experimental wave amplitude at wave gauge S4 are the same. In Case B some
spurious oscillations of the free surface are generated behind the solitary wave in the offshore
boundary. These are probably due to the way in which the wave is generated, imposing only the
water depth value, and not the velocity, at the inlet boundary.

The numerical results are compared with the experimental data at wave gauges S5, S7, and
S9 in Figure 9. The observed runup at the vertical wall was 2.7cm for Case A and 45.7cm for
Case B. The computed runup at the wall for Case A was 2.5cm. Nonetheless, it should be noticed
that the runup at the vertical wall is very sensitive to the incoming wave height. In our numerical
results for Case A, an increase of just 1mm (which is of the order of the gauge accuracy) in
the incoming wave height at station S4 would produce an increase of approximately 2mm in the
computed runup at the wall and thus, it would produce a perfect match with the experimental data.
In the numerical results reported by the participants in the workshop the runup for Case A varies
between 1.9 and 2.8cm depending on the numerical model used and on the offshore boundary
condition. In particular we should cite the results of Grilli, who obtained a 2.5cm runup with a
fully non-linear potential flow model (2D in the vertical plane). As we are neglecting in the present
simulations the effects of turbulence and bed friction, our numerical results should be very similar
to those of Grilli. This is confirmed by the time series of the water depth at gauges S7 and S9,
which are extremely similar and consistent with the results of Grilli [27] and also by the runup at
the vertical wall.

In Case B the observed runup at the vertical wall (45.7cm) is extremely high in comparison
with the incident wave, and also significantly higher than the computed runup (29cm). It was
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Figure 9. Solitary wave runup. Numerical results (solid line) and experimental data (circles) at
wave gauges S5, S7, S9, and wall. The size of the circles is proportional to the experimental

uncertainty: (a) Case A and (b) Case B.

Figure 10. Submerged bar test case: (a) vertical discretization and (b) location of the experimental stations.

suggested by Kanoglu and Synolakis [28] that this drastic increase in the runup happens because
the wave breaks right on the wall, causing the collapse of a trapped air bubble under the plunging
wave [29]. This process cannot be predicted by a single phase model and therefore, the computed
runup at the wall for Case B is lower than the measured one.

4.4. Short wave propagation over a 1D bar

In this test case a non-linear dispersive wave is propagated over a 1D submerged bar. The numerical
results are compared with the experimental data obtained by Beji and Battjes [21] in laboratory
experiments (Figure 10). The experiments of Beji and Battjes have also been modelled by Stelling
and Zijlema [4], Li and Fleming [6], and Lin and Li [7] among others. Two different waves are
considered, which correspond to Case A and Case C in [21]. In both cases the water depth is 40cm.
In Case A the wave height is 2cm and the wave period 2.02s, which gives a ratio H/L=0.0053. In
Case C the wave height is 4.1cm and the wave period 1.01s, with a ratio H/L=0.027. The shoaling
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produced by the bar increases the wave height and reduces the wave length, increasing in such a
way the ratio H/L and therefore the non-linear effects, boosting the higher harmonics. After the
bar the harmonics are dispersed at different wave celerities. This process can only be computed
with a non-hydrostatic model.

The time step used in the computations is �t=0.01s and the spatial discretization size �x=
0.0125m. The vertical discretization is done with three horizontal layers (Figure 10). The thickness
of each layer is 20cm (bed layer), 15cm (middle layer), and 5cm (surface layer). The spatial
domain covers 35m, including a sponge layer of 10m located next to the outlet boundary. The
number of finite volumes in the numerical mesh is 8400.

Regarding the boundary conditions, at the inlet boundary the free surface level is specified from
the sinusoidal wave shape, and the normal pressure and velocity gradients are set to zero. In order
to minimize wave reflections at the outlet boundary a sponge layer is used to damp the wave
energy, and the free surface elevation is set to 0.4m. The sponge layer used was proposed by

Figure 11. Submerged bar. Numerical results (solid line) and experimental data (circles).
Case A. Stations S4, S5, S6 and S7.
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Figure 12. Submerged bar. Numerical results (solid line) and experimental data (circles).
Case A. Stations S8, S9, S10 and S11.

Dingemans in [30], being defined by

� = 1

2

(
tanh

(
sin(
x̂/2)

1− x̂2

)
+1

)

x̂ = 4
x−L0

L
−1 if 0<

x−L0

L
<0.5

x̂ = 3−4
x−L0

L
if 0.5<

x−L0

L
<1

(50)

where � is a damping coefficient that defines a damping term in the momentum equations given
by �ui , L0 is the start of the sponge layer, and L is its length. The damping term �ui enters on
the left-hand side of Equations (10)–(12), and it is discretized implicitly.

The agreement between numerical and experimental data is very satisfactory at all the experi-
mental stations for Case A (Figures 11 and 12). The largest disagreements appear at station S10
(x=19m), where a small undulation in the tough of the wave is not captured by the model. Apart
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Figure 13. Submerged bar. Numerical results computed with an hydrostatic shallow water model (solid
line) and experimental data (circles). Case A. Stations S4, S5, S6 and S7.

from that, all the high-order harmonics generated in the shoaling process are also generated by
the model.

As it has been previously said, the propagation of the short wave and the shoaling produced
by the bar cannot be computed with an hydrostatic model, because wave dispersion, which is
a 3D non-hydrostatic process, plays a very important role in this process. The limitations of a
hydrostatic shallow water model are shown in Figure 13. Details of the shallow water model used
to compute the numerical results presented in Figure 13 can be found in Reference [31].

Case C is more demanding since the non-linearities are stronger (the ratio H/L is much higher
than in Case A). The model gives reasonable results at all the stations (Figures 14 and 15), although
some small features of the wave shape are not well captured at the stations S7 (x=14.5m),
S8 (x=15.7m), and S9 (x=17.3m). This is the region where the depth increases, producing
a dispersion of the different wave harmonics, which have been produced by the shoaling effect
of the bar. The largest disagreements appear at station S9. At station S10 (x=19.0m) the wave
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Figure 14. Submerged bar. Numerical results (solid line) and experimental data (circles).
Case C. Stations S4, S5, S6 and S7.

amplitude is slightly overpredicted by the model. Despite those small discrepancies the overall
agreement with the experimental data is good.

4.5. Short wave propagation over a 2D shoal

This is a fully three-dimensional case in which the capabilities of the model to compute short wave
refraction and diffraction are tested. A regular wave with a period of T =1s and a wave height
of H0=4.64cm is propagated over a sloping bed with an elliptical shoal (Figure 16). Similar
test cases have also been used to validate wave models by Stelling and Zijlema [4], Zijlema and
Stelling [5], Li and Fleming [6], and Saied and Tsanis [32].

The spatial domain is a rectangle of 20m in the x-direction and 35m in the y-direction (including
a 5m sponge layer next to the outlet boundary). The bed slope is i=0.02 and the bathymetric
lines form an angle of 20◦ with the x-direction. The bed elevation is given by

zb=−min[0.45,max(0.10,0.45−0.02(5.84+ y′))]+d (51)
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Figure 15. Submerged bar. Numerical results (solid line) and experimental data (circles).
Case C. Stations S8, S9, S10 and S11.

where d is the shoal thickness. The coordinates x ′ and y′ are defined by a 20◦ clockwise rotation
of the x, y coordinates:

x ′ = x cos20◦− y sin20◦, y′ = x sin20◦+ y cos20◦ (52)

The shoal has an elliptical shape given by

(
x ′

4

)2

+
(
y′

3

)2

=1 (53)

and a thickness defined by:

d=−0.30+0.50

√
1−

(
x ′
5

)2

−
(

y′
3.75

)2

(54)
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Figure 16. 2D elliptical shoal test case: (a) bed elevation (m) and (b) relative wave height.

A time step of �t=0.005s and a cell size of �x=�y=0.05m (280 000 rectangular cells on
each layer) have been used in the computations. The vertical discretization is done with 3 horizontal
layers with a thickness of 25cm (bed layer), 12cm (middle layer), and 8cm (surface layer). This
gives a total number of 840 000 finite volumes. The Gamma scheme with a second-order time
discretization was used in the computations. Boundary conditions are specified in a similar manner
as in the submerged bar test case.

The computation is started from a hydrostatic situation (still water) and run over 50 seconds, after
which a steady situation has been reached. The relative wave height field is shown in Figure 16,
where the relative wave height Hr is computed as the difference between the maximum water
surface elevation and the minimum wave elevation, divided by the incident wave height (Hr=
(zs,max−zs,min)/H0). The effect of wave refraction as well as the shadow rays caused by diffraction
can be clearly observed in Figure 16. The comparison between numerical and experimental relative
wave height at different sections is quite satisfactory (Figure 17), being the maximum wave height
as well as the interference patterns caused by diffraction well captured by the model.

5. CONCLUSIONS

In this paper a 3D free surface non-hydrostatic layer-structured finite volume model has been
presented. The model, which solves the 3D Euler equations for incompressible flow, has been
applied to several test cases that involve non-linear short wave propagation, shoaling, refraction,
and diffraction processes. The flow equations are discretized in a collocated mesh, which is
unstructured in the horizontal plane, but structured in the vertical direction. Pressure–velocity
coupling is achieved by the SIMPLE algorithm, using Rhie–Chow interpolation to stabilize the
pressure field. The model reduces to a 2D depth-averaged shallow water model when one single
layer is defined for the vertical discretization.
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Figure 17. 2D elliptical shoal. Experimental validation: (a) section y=1m; (b) section y=3m; (c) section
y=5m; (d) section y=7m; and (e) section x=−2m.

All the numerical results have been compared with either analytical solutions or with experi-
mental data, showing in all cases a very satisfactory agreement with only three horizontal layers
in the numerical mesh. This means that the model can take into account the effects of non-
hydrostatic pressure distribution with a rather coarse vertical discretization. Vertical refinement
might be needed for applications in which it is necessary to resolve flow patterns in the vertical
plane, but it is not a requirement otherwise, even if the pressure distribution is non-hydrostatic.

It has been shown by the numerical results that the correct implementation of the pressure
boundary condition at the free surface is vital in order to obtain an accurate wave celerity with
just a few horizontal layers. The zero pressure boundary condition must be imposed at the face of
the free surface volumes, and not at the volume node. Otherwise the wave celerity is computed
erroneously unless a very fine vertical discretization is used, which increases considerably the
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computational cost. In the numerical results it has also been noticed the importance of using an
explicit discretization of the free surface gradient (hydrostatic pressure source term). An implicit
discretization of that term introduces too much damping in the solution, which gives too small
wave heights.

Although shear stresses can be neglected in all the situations studied in this paper, they can
be easily incorporated in the model by just adding a diffusion term to the momentum equations.
Wave–current iteration is also considered naturally by the equations. Those are great advantages
of these kind of wave models.

Finally, it should be noticed that even if most of the test cases presented in this paper have been
computed with a structured mesh, the code can handle accurately unstructured meshes made of
triangular prisms. This has been shown in test cases number 1 and 2, which involve the computation
of a standing short wave in a closed basin and the computation of a radially symmetric wave.
Therefore, the model is suitable for computing short wave propagation over irregular geometries.
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